Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
2.
Mayo Clin Proc ; 95(6): 1213-1221, 2020 06.
Article in English | MEDLINE | ID: covidwho-1450185

ABSTRACT

As the coronavirus disease 19 (COVID-19) global pandemic rages across the globe, the race to prevent and treat this deadly disease has led to the "off-label" repurposing of drugs such as hydroxychloroquine and lopinavir/ritonavir, which have the potential for unwanted QT-interval prolongation and a risk of drug-induced sudden cardiac death. With the possibility that a considerable proportion of the world's population soon could receive COVID-19 pharmacotherapies with torsadogenic potential for therapy or postexposure prophylaxis, this document serves to help health care professionals mitigate the risk of drug-induced ventricular arrhythmias while minimizing risk of COVID-19 exposure to personnel and conserving the limited supply of personal protective equipment.


Subject(s)
Death, Sudden, Cardiac , Hydroxychloroquine , Long QT Syndrome , Lopinavir , Risk Adjustment/methods , Ritonavir , Torsades de Pointes , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/adverse effects , Betacoronavirus/drug effects , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/prevention & control , Drug Combinations , Drug Monitoring/methods , Drug Repositioning/ethics , Drug Repositioning/methods , Electrocardiography/methods , Humans , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/adverse effects , Long QT Syndrome/chemically induced , Long QT Syndrome/mortality , Long QT Syndrome/therapy , Lopinavir/administration & dosage , Lopinavir/adverse effects , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Ritonavir/administration & dosage , Ritonavir/adverse effects , SARS-CoV-2 , Torsades de Pointes/chemically induced , Torsades de Pointes/mortality , Torsades de Pointes/therapy
3.
Lancet Respir Med ; 9(8): 863-872, 2021 08.
Article in English | MEDLINE | ID: covidwho-1340915

ABSTRACT

BACKGROUND: SARS-CoV-2 entry in human cells depends on angiotensin-converting enzyme 2, which can be upregulated by inhibitors of the renin-angiotensin system (RAS). We aimed to test our hypothesis that discontinuation of chronic treatment with ACE-inhibitors (ACEIs) or angiotensin II receptor blockers (ARBs) mitigates the course o\f recent-onset COVID-19. METHODS: ACEI-COVID was a parallel group, randomised, controlled, open-label trial done at 35 centres in Austria and Germany. Patients aged 18 years and older were enrolled if they presented with recent symptomatic SARS-CoV-2 infection and were chronically treated with ACEIs or ARBs. Patients were randomly assigned 1:1 to discontinuation or continuation of RAS inhibition for 30 days. Primary outcome was the maximum sequential organ failure assessment (SOFA) score within 30 days, where death was scored with the maximum achievable SOFA score. Secondary endpoints were area under the death-adjusted SOFA score (AUCSOFA), mean SOFA score, admission to the intensive care unit, mechanical ventilation, and death. Analyses were done on a modified intention-to-treat basis. This trial is registered with ClinicalTrials.gov, NCT04353596. FINDINGS: Between April 20, 2020, and Jan 20, 2021, 204 patients (median age 75 years [IQR 66-80], 37% females) were randomly assigned to discontinue (n=104) or continue (n=100) RAS inhibition. Within 30 days, eight (8%) of 104 died in the discontinuation group and 12 (12%) of 100 patients died in the continuation group (p=0·42). There was no significant difference in the primary endpoint between the discontinuation and continuation group (median [IQR] maximum SOFA score 0·00 (0·00-2·00) vs 1·00 (0·00-3·00); p=0·12). Discontinuation was associated with a significantly lower AUCSOFA (0·00 [0·00-9·25] vs 3·50 [0·00-23·50]; p=0·040), mean SOFA score (0·00 [0·00-0·31] vs 0·12 [0·00-0·78]; p=0·040), and 30-day SOFA score (0·00 [10-90th percentile, 0·00-1·20] vs 0·00 [0·00-24·00]; p=0·023). At 30 days, 11 (11%) in the discontinuation group and 23 (23%) in the continuation group had signs of organ dysfunction (SOFA score ≥1) or were dead (p=0·017). There were no significant differences for mechanical ventilation (10 (10%) vs 8 (8%), p=0·87) and admission to intensive care unit (20 [19%] vs 18 [18%], p=0·96) between the discontinuation and continuation group. INTERPRETATION: Discontinuation of RAS-inhibition in COVID-19 had no significant effect on the maximum severity of COVID-19 but may lead to a faster and better recovery. The decision to continue or discontinue should be made on an individual basis, considering the risk profile, the indication for RAS inhibition, and the availability of alternative therapies and outpatient monitoring options. FUNDING: Austrian Science Fund and German Center for Cardiovascular Research.


Subject(s)
Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , COVID-19 , Hypertension , Renin-Angiotensin System , SARS-CoV-2 , Angiotensin Receptor Antagonists/administration & dosage , Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Area Under Curve , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/therapy , Female , Humans , Hypertension/drug therapy , Hypertension/epidemiology , Male , Middle Aged , Organ Dysfunction Scores , Outcome and Process Assessment, Health Care , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Risk Adjustment/methods , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Severity of Illness Index , Withholding Treatment/statistics & numerical data
6.
Eur J Health Econ ; 22(7): 1005-1016, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1310570

ABSTRACT

The COVID-19 pandemic has led to disruptions in healthcare utilization and spending. While some changes might persist (e.g. substitution of specialist visits by online consultations), others will be transitory (e.g. fewer surgical procedures due to cancellation of treatments). This paper discusses the implications of transitory changes in healthcare utilization and spending for risk adjustment of health plan payment. In practice, risk adjustment methodologies typically consist of two steps: (1) calibration of payment weights for a given set of risk adjusters and (2) calculation of payments to insurers by combining the calibrated weights with enrollee characteristics. In this paper, we first introduce a simple conceptual framework for analyzing the (potential) distortions from the pandemic for both steps and then provide a hypothetical illustration of how these distortions can lead to under- or overpayment of insurers. The size of these under-/overpayments depends on (1) the impact of the pandemic on patterns in utilization and spending, (2) the distribution of risk types across insurers, (3) the extent to which insurers are disproportionately affected by the pandemic, and (4) features of the risk adjustment system.


Subject(s)
COVID-19 , Insurance Carriers , Insurance, Health/economics , Risk Adjustment/methods , Health Expenditures , Humans , Pandemics , SARS-CoV-2
7.
S Afr Fam Pract (2004) ; 63(1): e1-e3, 2021 06 28.
Article in English | MEDLINE | ID: covidwho-1296012

ABSTRACT

The use of hand sanitisers is common practice to prevent the spread of coronavirus disease 2019 (COVID-19). However, the safety thereof requires consideration as this may be hazardous in children. Recent studies have shown that the misuse and increased unsupervised availability of alcohol-based hand sanitisers may result in adverse events in children such as skin irritation, dryness, cracking and peeling. Unintentional or intentional ingestion of hand sanitisers in children under the age of 12 years may occur because of the colour, smell and flavour added to it. Consumption of alcohol in children may result in hypoglycaemia, apnoea and acidosis. This allows the invasion of other bacterial and viral infections. Children may also rub their eyes with sanitised hands and cause ocular injury. Therefore, the use of hand sanitisers in general needs to be revised in both children and adults. Other interventions on lowering the risk of adverse events because of misuse of hand sanitiser should be practised more often. These include promoting washing of hands over sanitisers where possible, training children on how to use hand sanitisers and creating awareness of the dangers if ingested or in contact with the eyes.


Subject(s)
COVID-19 , Disease Transmission, Infectious/prevention & control , Drug-Related Side Effects and Adverse Reactions , Hand Sanitizers , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , Child , Child Health , Communicable Disease Control/methods , Drug Misuse/adverse effects , Drug Misuse/prevention & control , Drug-Related Side Effects and Adverse Reactions/diagnosis , Drug-Related Side Effects and Adverse Reactions/etiology , Drug-Related Side Effects and Adverse Reactions/prevention & control , Eye Diseases/chemically induced , Eye Diseases/prevention & control , Hand Disinfection/methods , Hand Sanitizers/pharmacology , Hand Sanitizers/toxicity , Humans , Risk Adjustment/methods , SARS-CoV-2/drug effects , Skin Diseases/chemically induced , Skin Diseases/prevention & control
10.
Chest ; 160(5): 1693-1703, 2021 11.
Article in English | MEDLINE | ID: covidwho-1274186

ABSTRACT

BACKGROUND: Decannulation from venovenous extracorporeal membrane oxygenation (ECMO) at the earliest and safest possible time may improve outcomes and reduce cost. Yet, no prospective studies have compared weaning strategies for liberation from ECMO. RESEARCH QUESTION: Is a protocolized daily assessment of readiness to liberate from venovenous ECMO safe and feasible? STUDY DESIGN AND METHODS: We conducted a prospective, single-arm safety and feasibility study of a protocol for daily assessment of readiness to liberate from venovenous ECMO among consecutive adult patients receiving venovenous ECMO across four ICUs at a single center between June 20, 2020, and November 24, 2020. The ECMO-free protocol included three phases: (1) the safety screening, (2) non-ECMO Fio2 titration, and (3) the ECMO-free trial. Enrollment, interventions, and data collection were performed prospectively by trained study staff. RESULTS: Twenty-six patients received the ECMO-free protocol on 385 patient-days. The safety screening was passed during a total of 59 ECMO-free daily assessments (15.3%) among 20 patients. Every passed safety screening proceeded to an ECMO-free trial. Twenty-eight passed ECMO-free trials (47.5%) occurred among 16 patients (61.5%). No missed safety screenings, protocol deviations, or adverse events occurred. Of the 16 patients who passed an ECMO-free trial, 14 patients (87.5%) were decannulated. Among decannulated patients, 12 patients (85.7%) were decannulated on the same day as a passed ECMO-free trial, 6 patients (42.9%) were decannulated on the first day that they passed an ECMO-free trial, and 6 patients (42.9%) passed an ECMO-free trial at least twice consecutively before decannulation. The median time from first passed ECMO-free trial to decannulation was 2 days (interquartile range, 0-3 days). INTERPRETATION: The ECMO-free protocol is feasible and may identify patients for decannulation earlier than gradual approaches to weaning.


Subject(s)
Clinical Protocols , Extracorporeal Membrane Oxygenation/methods , Risk Adjustment/methods , Symptom Assessment/methods , Critical Care/methods , Critical Care/standards , Duration of Therapy , Feasibility Studies , Female , Humans , Male , Middle Aged , Outcome and Process Assessment, Health Care , Patient Safety , Pilot Projects , Prospective Studies , Withholding Treatment/standards
12.
Dig Liver Dis ; 53(6): 677-681, 2021 06.
Article in English | MEDLINE | ID: covidwho-1213138

ABSTRACT

The vaccination campaign against Sars-CoV-2 commenced in Italy at the end of December 2020. The first ones to receive the immunization against the virus were the health workers and the residents of nursing homes, following which the vaccine would be available for the entire population, beginning with the most vulnerable individuals. SARS-CoV2 vaccines have been demonstrated to be safe for the general population, although no data for patients with liver diseases or those having undergone liver transplantation are available so far. The present position statement AISF is an attempt to suggest, based on the published data on the impact of Sars-Cov-2 infection in patients with chronic liver disease, a possible priority for vaccination for this category of patients.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunization Programs , Liver Diseases , Risk Adjustment/methods , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/classification , COVID-19 Vaccines/pharmacology , Humans , Immunization Programs/methods , Immunization Programs/organization & administration , Immunosuppressive Agents/therapeutic use , Italy/epidemiology , Liver Diseases/immunology , Liver Diseases/therapy , Liver Transplantation , Patient Safety , Patient Selection , Risk Assessment , SARS-CoV-2/immunology , Transplant Recipients , Treatment Outcome
13.
JAMA Netw Open ; 4(4): e216468, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1196363

ABSTRACT

Importance: Data on the efficacy of hydroxychloroquine or lopinavir-ritonavir for the treatment of high-risk outpatients with COVID-19 in developing countries are needed. Objective: To determine whether hydroxychloroquine or lopinavir-ritonavir reduces hospitalization among high-risk patients with early symptomatic COVID-19 in an outpatient setting. Design, Setting, and Participants: This randomized clinical trial was conducted in Brazil. Recently symptomatic adults diagnosed with respiratory symptoms from SARS-CoV-2 infection were enrolled between June 2 and September 30, 2020. The planned sample size was 1476 patients, with interim analyses planned after 500 patients were enrolled. The trial was stopped after the interim analysis for futility with a sample size of 685 patients. Statistical analysis was performed in December 2020. Interventions: Patients were randomly assigned to hydroxychloroquine (800 mg loading dose, then 400 mg daily for 9 days), lopinavir-ritonavir (loading dose of 800 mg and 200 mg, respectively, every 12 hours followed by 400 mg and 100 mg, respectively, every 12 hours for the next 9 days), or placebo. Main Outcomes and Measures: The primary outcomes were COVID-19-associated hospitalization and death assessed at 90 days after randomization. COVID-19-associated hospitalization was analyzed with a Cox proportional hazards model. The trial included the following secondary outcomes: all-cause hospitalization, viral clearance, symptom resolution, and adverse events. Results: Of 685 participants, 632 (92.3%) self-identified as mixed-race, 377 (55.0%) were women, and the median (range) age was 53 (18-94) years. A total of 214 participants were randomized to hydroxychloroquine; 244, lopinavir-ritonavir; and 227, placebo. At first interim analysis, the data safety monitoring board recommended stopping enrollment of both hydroxychloroquine and lopinavir-ritonavir groups because of futility. The proportion of patients hospitalized for COVID-19 was 3.7% (8 participants) in the hydroxychloroquine group, 5.7% (14 participants) in the lopinavir-ritonavir group, and 4.8% (11 participants) in the placebo group. We found no significant differences between interventions for COVID-19-associated hospitalization (hydroxychloroquine: hazard ratio [HR], 0.76 [95% CI, 0.30-1.88]; lopinavir-ritonavir: HR, 1.16 [95% CI, 0.53-2.56] as well as for the secondary outcome of viral clearance through day 14 (hydroxychloroquine: odds ratio [OR], 0.91 [95% CI, 0.82-1.02]; lopinavir-ritonavir: OR, 1.04 [95% CI, 0.94-1.16]). At the end of the trial, there were 3 fatalities recorded, 1 in the placebo group and 2 in the lopinavir-ritonavir intervention group. Conclusions and Relevance: In this randomized clinical trial, neither hydroxychloroquine nor lopinavir-ritonavir showed any significant benefit for decreasing COVID-19-associated hospitalization or other secondary clinical outcomes. This trial suggests that expedient clinical trials can be implemented in low-income settings even during the COVID-19 pandemic. Trial Registration: ClinicalTrials.gov Identifier: NCT04403100.


Subject(s)
COVID-19 , Early Medical Intervention , Hydroxychloroquine/administration & dosage , Lopinavir/administration & dosage , Ritonavir/administration & dosage , Antiviral Agents/administration & dosage , Brazil/epidemiology , COVID-19/epidemiology , COVID-19/therapy , Drug Monitoring/methods , Drug Monitoring/statistics & numerical data , Drug Therapy, Combination/methods , Early Medical Intervention/methods , Early Medical Intervention/statistics & numerical data , Female , Hospitalization/statistics & numerical data , Humans , Male , Medical Futility , Middle Aged , Risk Adjustment/methods , Symptom Assessment/methods , Treatment Outcome
14.
Open Heart ; 8(1)2021 04.
Article in English | MEDLINE | ID: covidwho-1195855

ABSTRACT

BACKGROUND: The response to COVID-19 has required cancellation of all but the most urgent procedures; there is therefore a need for the reintroduction of a safe elective pathway. METHODS: This was a study of a pilot pathway performed at Barts Heart Centre for the admission of patients requiring elective coronary and structural procedures during the COVID-19 pandemic (April-June 2020). All patients on coronary and structural waiting lists were screened for procedural indications, urgency and adverse features for COVID-19 prognosis and discussed at dedicated multidisciplinary teams. Dedicated admission pathways involving preadmission isolation, additional consent, COVID-19 PCR testing and dedicated clean areas were used. RESULTS: 143 patients (101 coronary and 42 structural) underwent procedures (coronary angiography, percutaneous coronary intervention, transcatheter aortic valve intervention and MitralClip) during the study period. The average age was 68.2; 74% were male; and over 93% had one or more moderate COVID-19 risk factors. All patients were COVID-19 PCR negative on admission with (8.1%) COVID-19 antibody positive (swab negative). All procedures were performed successfully with low rates of procedural complications (9.8%). At 2-week follow-up, no patients had symptoms or confirmed COVID-19 infection with significant improvements in quality if life and symptoms. CONCLUSION: We demonstrated that patients undergoing coronary and structural procedures can be safely admitted during the COVID-19 pandemic, with no patients contracting COVID-19 during their admission. Reassuringly, patients reflective of typical practice, that is, those at moderate or higher risk, were treated successfully. This pilot provides important information applicable to other settings, specialties and areas to reintroduce services safely.


Subject(s)
COVID-19 , Cardiology Service, Hospital/organization & administration , Coronary Angiography/methods , Elective Surgical Procedures , Heart Valve Prosthesis Implantation/methods , Infection Control , Percutaneous Coronary Intervention/methods , Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , Elective Surgical Procedures/methods , Elective Surgical Procedures/statistics & numerical data , Elective Surgical Procedures/trends , Female , Humans , Infection Control/methods , Infection Control/organization & administration , Male , Organizational Innovation , Outcome and Process Assessment, Health Care , Risk Adjustment/methods , SARS-CoV-2 , Safety Management/organization & administration , United Kingdom/epidemiology
16.
Contemp Clin Trials ; 104: 106368, 2021 05.
Article in English | MEDLINE | ID: covidwho-1155430

ABSTRACT

OBJECTIVES: COVID-19 pandemic caused several alarming challenges for clinical trials. On-site source data verification (SDV) in the multicenter clinical trial became difficult due to travel ban and social distancing. For multicenter clinical trials, centralized data monitoring is an efficient and cost-effective method of data monitoring. Centralized data monitoring reduces the risk of COVID-19 infections and provides additional capabilities compared to on-site monitoring. The key steps for on-site monitoring include identifying key risk factors and thresholds for the risk factors, developing a monitoring plan, following up the risk factors, and providing a management plan to mitigate the risk. METHODS: For analysis purposes, we simulated data similar to our clinical trial data. We classified the data monitoring process into two groups, such as the Supervised analysis process, to follow each patient remotely by creating a dashboard and an Unsupervised analysis process to identify data discrepancy, data error, or data fraud. We conducted several risk-based statistical analysis techniques to avoid on-site source data verification to reduce time and cost, followed up with each patient remotely to maintain social distancing, and created a centralized data monitoring dashboard to ensure patient safety and maintain the data quality. CONCLUSION: Data monitoring in clinical trials is a mandatory process. A risk-based centralized data review process is cost-effective and helpful to ignore on-site data monitoring at the time of the pandemic. We summarized how different statistical methods could be implemented and explained in SAS to identify various data error or fabrication issues in multicenter clinical trials.


Subject(s)
COVID-19 , Clinical Trials as Topic , Data Accuracy , Multicenter Studies as Topic , Research Design/trends , Risk Management , COVID-19/epidemiology , COVID-19/prevention & control , Change Management , Clinical Trials Data Monitoring Committees/organization & administration , Clinical Trials as Topic/economics , Clinical Trials as Topic/methods , Clinical Trials as Topic/organization & administration , Communicable Disease Control/methods , Cost-Benefit Analysis , Humans , Risk Adjustment/methods , Risk Adjustment/trends , Risk Assessment/methods , Risk Management/methods , Risk Management/trends , SARS-CoV-2 , Travel-Related Illness
17.
Ann Otol Rhinol Laryngol ; 130(11): 1245-1253, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1140414

ABSTRACT

OBJECTIVES: Define aerosol and droplet risks associated with routine otolaryngology clinic procedures during the COVID-19 era. METHODS: Clinical procedures were simulated in cadaveric heads whose oral and nasal cavities were coated with fluorescent tracer (vitamin B2) and breathing was manually simulated through retrograde intubation. A cascade impactor placed adjacent to the nares collected generated particles with aerodynamic diameters ≤14.1 µm. The 3D printed models and syringes were used to simulate middle and external ear suctioning as well as open suctioning, respectively. Provider's personal protective equipment (PPE) and procedural field contamination were also recorded for all trials using vitamin B2 fluorescent tracer. RESULTS: The positive controls of nebulized vitamin B2 produced aerosol particles ≤3.30 µm and endonasal drilling of a 3D model generated particles ≤14.1 µm. As compared with positive controls, aerosols and small droplets with aerodynamic diameter ≤14.1 µm were not detected during rigid nasal endoscopy, flexible fiberoptic laryngoscopy, and rigid nasal suction of cadavers with simulated breathing. There was minimal to no field contamination in all 3 scenarios. Middle and external ear suctioning and open container suctioning did not result in any detectable droplet contamination. The clinic suction unit contained all fluorescent material without surrounding environmental contamination. CONCLUSION: While patients' coughing and sneezing may create a baseline risk for providers, this study demonstrates that nasal endoscopy, flexible laryngoscopy, and suctioning inherently do not pose an additional risk in terms of aerosol and small droplet generation. An overarching generalization cannot be made about endoscopy or suctioning being an aerosol generating procedure. LEVEL OF EVIDENCE: 3.


Subject(s)
Aerosols/adverse effects , COVID-19 , Disease Transmission, Infectious/prevention & control , Endoscopy , Otolaryngology , Risk Adjustment/methods , Suction , COVID-19/prevention & control , COVID-19/transmission , Cadaver , Endoscopy/adverse effects , Endoscopy/instrumentation , Endoscopy/methods , Humans , Otolaryngology/methods , Otolaryngology/standards , Outcome Assessment, Health Care , Personal Protective Equipment/classification , Personal Protective Equipment/virology , Research Design , Risk Assessment/methods , SARS-CoV-2 , Suction/adverse effects , Suction/instrumentation , Suction/methods
20.
Am J Obstet Gynecol MFM ; 2(3): 100130, 2020 08.
Article in English | MEDLINE | ID: covidwho-1064733

ABSTRACT

Because the obstetrical population seems to have a high proportion of asymptomatic patients who are carriers of severe acute respiratory syndrome coronavirus 2, universal testing has been proposed as a strategy to risk-stratify all obstetrical admissions and guide infection prevention protocols. Here, we describe a case of a critically ill obstetrical patient with all the clinical symptoms of coronavirus disease 2019 and 3 false-negative results of nasopharyngeal swabs for molecular testing. We review and discuss the uncertain clinical characteristics of current severe acute respiratory syndrome coronavirus 2 molecular testing and the implications of false-negative results in the obstetrical population.


Subject(s)
Bronchoalveolar Lavage Fluid/virology , COVID-19 Testing/methods , COVID-19 , False Negative Reactions , Infection Control/methods , Obstetrics and Gynecology Department, Hospital/organization & administration , Pregnancy Complications, Infectious , SARS-CoV-2/isolation & purification , Adult , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , Cesarean Section/methods , Critical Care/methods , Female , Humans , Pregnancy , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/virology , Respiration, Artificial , Risk Adjustment/methods , Severity of Illness Index , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL